Mapping SQL queries with Django ORM | Cheatsheet

Mapping SQL queries with Django ORM | Cheatsheet

Understand common SQL queries and their mapping to Django ORM

Introduction

Today I will be describing Django ORM via SQL queries.

Many of you may know SQL queries but converting SQL queries to Django ORM is a basic challenge everyone faces. Let's learn and understand it properly today for better coding practices.

We will be covering the following:

We will start with the Basic and move to more Advances queries

1. Create Table

Let us consider a simple base model for a Book with attributes title, pages, and price. If we want to create a table to store Book data, in SQL we need to run

CREATE TABLE Book (id int, title varchar(50), price int NOT NULL, pages int NOT NULL)

The same table is modeled in Django as a class that inherits from the base Model class. The ORM creates the equivalent table under the hood.

class Book(models.Model):
    title = models.CharField(max_length=50, blank=True)
    price = models.IntegerField()
    pages = models.IntegerField()

The most used data types are:

SQLDjango
INTIntegerField()
VARCHAR(n)CharField(max_length=n)
TEXTTextField()
FLOAT(n)FloatField()
DATEDateField()
TIMETimeField()
DATETIMEDateTimeField()

Now let's learn how to work on the Book Model and its relation with SQL queries

2. Select the rows from the table

  1. Fetch all rows

  2. Fetch specific columns

  3. Fetch distinct rows

  4. Fetch specific rows

  5. LIMIT & OFFSET keyword

(a) Fetch all data from Table

SQL:

SELECT * FROM Book;

Django:

books_data = Book.objects.all()
for book in books_data :
    print(book.title)
    print(book.price)
    print(book.pages)

(b) Fetch specific columns

SQL:

SELECT name, age FROM Book;

Django:

Person.objects.only('name', 'age')

(c) Fetch distinct rows

SQL:

SELECT DISTINCT name, age
FROM Person;

Django:

Person.objects.values('name', 'age').distinct()

(d) Fetch some specific number of rows

SQL:

SELECT * FROM Person LIMIT 10;

Django:

Person.objects.all()[:10]

(e) LIMIT & OFFSET keywords

  • The limit keyword is used to limit the number of rows returned in a query result.

  • The OFFSET value is also most often used together with the LIMIT keyword. The OFFSET value allows us to specify which row to start from retrieving data

  • Note - Row count starts from 0

SQL:

SELECT *
FROM Person
OFFSET 5
LIMIT 5;

Django:

Person.objects.all()[5:10]

Now we will learn how to filter the data using the WHERE clause

3. Methods to Filter the rows from table

  1. Comparison operators (>, < , >=, <=, !=)

  2. BETWEEN clause

  3. LIKE operator

  4. IN operator

  5. AND, OR, NOT operator

(a) Filter by a single column

SQL:

SELECT *
FROM Person
WHERE id = 1;

Django:

Person.objects.filter(id=1)

(b) Filter by comparison operators

SQL:

WHERE age > 18;
WHERE age >= 18;
WHERE age < 18;
WHERE age <= 18;
WHERE age != 18;

Django:

Person.objects.filter(age__gt=18)
Person.objects.filter(age__gte=18)
Person.objects.filter(age__lt=18)
Person.objects.filter(age__lte=18)
Person.objects.exclude(age=18)

(c) BETWEEN Clause

  • Begin & End values are included

SQL:

SELECT *
FROM Person 
WHERE age BETWEEN 10 AND 20;

Django:

Person.objects.filter(age__range=(10, 20))

(d) LIKE operator

SQL:

WHERE name like '%A%';
WHERE name like binary '%A%';
WHERE name like 'A%';
WHERE name like binary 'A%';
WHERE name like '%A';
WHERE name like binary '%A';

Django:

Person.objects.filter(name__icontains='A')
Person.objects.filter(name__contains='A')
Person.objects.filter(name__istartswith='A')
Person.objects.filter(name__startswith='A')
Person.objects.filter(name__iendswith='A')
Person.objects.filter(name__endswith='A')

(e) IN operator

SQL:

WHERE id in (1, 2);

Django:

Person.objects.filter(id__in=[1, 2])

(f) AND operator

SQL:

WHERE gender='male' AND age > 25;

Django:

Person.objects.filter(gender='male', age__gt=25)

(g) OR operator

SQL:

WHERE gender='male' OR age > 25;

Django:

from django.db.models import Q
Person.objects.filter(Q(gender='male') | Q(age__gt=25))

(h) NOT operator

SQL:

WHERE NOT gender='male';

Django:

Person.objects.exclude(gender='male')

(i) NULL checks

SQL:

WHERE age is NULL;
WHERE age is NOT NULL;

Django:

Person.objects.filter(age__isnull=True)
Person.objects.filter(age__isnull=False)

# Alternate approach
Person.objects.filter(age=None)
Person.objects.exclude(age=None)

4. Methods to Order the rows from Table

Now we will learn how to filter the data using the ORDER BY keyword

  1. Ascending order

  2. Descending order

(a) Ascending Order

SQL:

SELECT *
FROM Person
order by age;

Django:

Person.objects.order_by('age')

(b) Descending Order

SQL:

SELECT *
FROM Person
ORDER BY age DESC;

Django:

Person.objects.order_by('-age')

5. Method to Insert the rows in Table

SQL:

INSERT INTO Person
VALUES ('Jack', '23', 'male');

Django:

Person.objects.create(name='jack', age=23, gender='male)

6. Methods to Update the rows in Table

  1. Update single row

  2. Update multiple rows

(a) Update single row

SQL:

UPDATE Person
SET age = 20
WHERE id = 1;

Django:

person = Person.objects.get(id=1)
person.age = 20
person.save()

(b) Update multiple rows

SQL:

UPDATE Person
SET age = age * 1.5;

Django:

from django.db.models import F

Person.objects.update(age=F('age')*1.5)

7. Methods to Delete the rows from table

  1. Delete all rows

  2. Delete specific rows

(a) Delete all rows

SQL:

DELETE FROM Person;

Django:

Person.objects.all().delete()

(b) Delete specific rows

SQL:

DELETE FROM Person
WHERE age < 10;

Django:

Person.objects.filter(age__lt=10).delete()

8. Aggregation queries

  1. MIN function

  2. MAX function

  3. AVG function

  4. SUM function

  5. COUNT function

(a) MIN Function

SQL:

SELECT MIN(age)
FROM Person;

Django:

>>> from django.db.models import Min
>>> Person.objects.all().aggregate(Min('age'))
{'age__min': 0}

(b) MAX Function

SQL:

SELECT MAX(age)
FROM Person;

Django:

>>> from django.db.models import Max
>>> Person.objects.all().aggregate(Max('age'))
{'age__max': 100}

(c) AVG Function

SQL:

SELECT AVG(age)
FROM Person;

Django:

>>> from django.db.models import Avg
>>> Person.objects.all().aggregate(Avg('age'))
{'age__avg': 50}

(d) SUM Function

SQL:

SELECT SUM(age)
FROM Person;

Django:

>>> from django.db.models import Sum
>>> Person.objects.all().aggregate(Sum('age'))
{'age__sum': 5050}

(e) COUNT Function

SQL:

SELECT COUNT(*)
FROM Person;

Django:

Person.objects.count()

9. Methods to Group By

  1. Count of person by gender

(a) Count of Person by gender

SQL:

SELECT gender, COUNT(*) as count
FROM Person
GROUP BY gender;

Django:

Person.objects.values('gender').annotate(count=Count('gender'))

10. Convert HAVING in SQL to Django ORM

  1. Count of Person by gender if number of person is greater than 1

(a) Count of Person by gender if number of person is greater than 1

SQL:

SELECT gender, COUNT('gender') as count
FROM Person
GROUP BY gender
HAVING count > 1;

Django:

Person.objects.annotate(count=Count('gender'))
.values('gender', 'count')
.filter(count__gt=1)

11. Convert JOINS in SQL to Django ORM

  1. Fetch publisher name for a book

  2. Fetch books which have specific publisher

Consider a foreign key relationship between books and publisher

class Publisher(models.Model):
    name = models.CharField(max_length=100)

class Book(models.Model):
    publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)

(a) Fetch publisher name for a book

SQL:

SELECT name
FROM Book
LEFT JOIN Publisher
ON Book.publisher_id = Publisher.id
WHERE Book.id=1;

Django:

book = Book.objects.select_related('publisher').get(id=1)
book.publisher.name

(b) Fetch books which have specific publisher

SQL:

SELECT *
FROM Book
WHERE Book.publisher_id = 1;

Django:

publisher = Publisher.objects.prefetch_related('book_set').get(id=1)
books = publisher.book_set.all()

I hope you liked😃 this post.

Please hit the Follow🤞 button below to read my future articles.

Hit a Clap👏 to cheer me up

Did you find this article valuable?

Support Proton Blogs by becoming a sponsor. Any amount is appreciated!